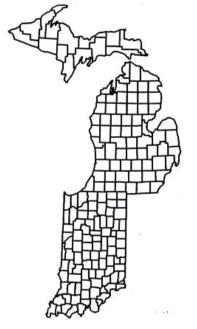
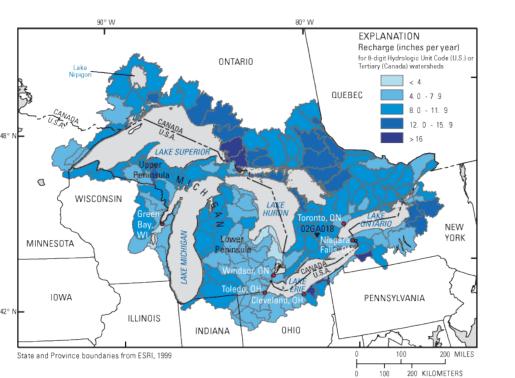

Getting More out of Irrigation

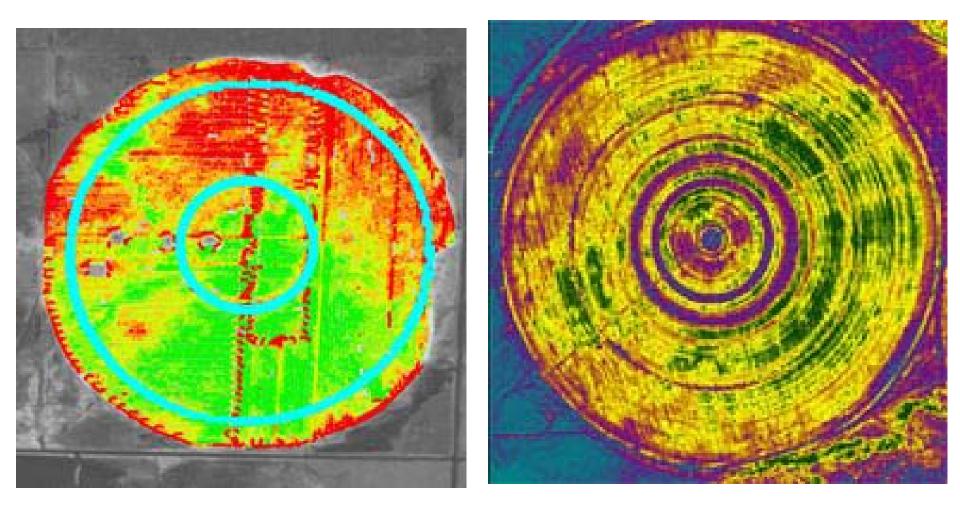

Lyndon Kelley

MSU Extension / Purdue University Irrigation Management Agent St. Joseph Co. MSU Extension, 612 E. Main St., Centreville, MI 49032 kelleyl@msu.edu, 269-467-5511


WWW.MSUE.MSU.edu - find St. Joseph Co.

- then hit the Irrigation button

Indiana's Irrigation is Concentrated in High Groundwater Recharge Areas



- 58% of Indiana's irrigated land is located in nine North west and North central counties.
- Groundwater conflicts in these counties are rare since the control of the early 1990's.
- Over 32" of annual rainfall with over 8" of recharge.

Getting More out of Irrigation

- Uniform application of water
- Preventing Irrigation Runoff
- •Water Supply- Quantity
- •Water Supply Quality Factors
- Scheduling water the crop when it needs it
 Fertigation-Chemigation

Have you seen yield map patterns that match the irrigation system configuration?

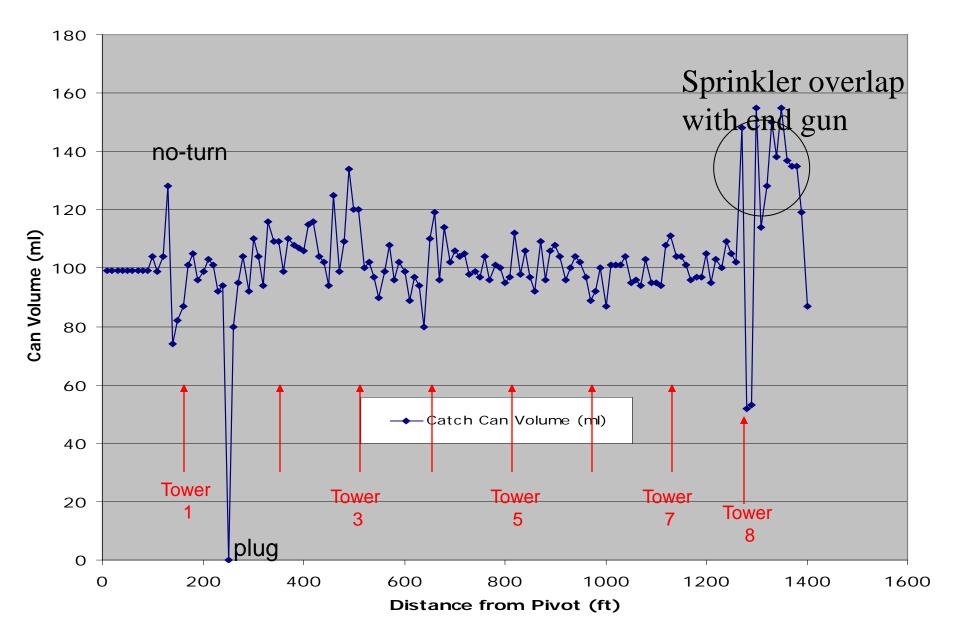
Irrigation System Uniformity

An 1" application should be 1" everywhere in the irrigated field

10% or less deviation from the average is ideal.
Over applied area will likely be over applied each application
Under applied areas will likely be under applied each application

A 30% deviation on a field in an 8" irrigation application year will have areas receiving as little as 5.6" and as great as 10.4"

Repair all visible system leaks and problems first.

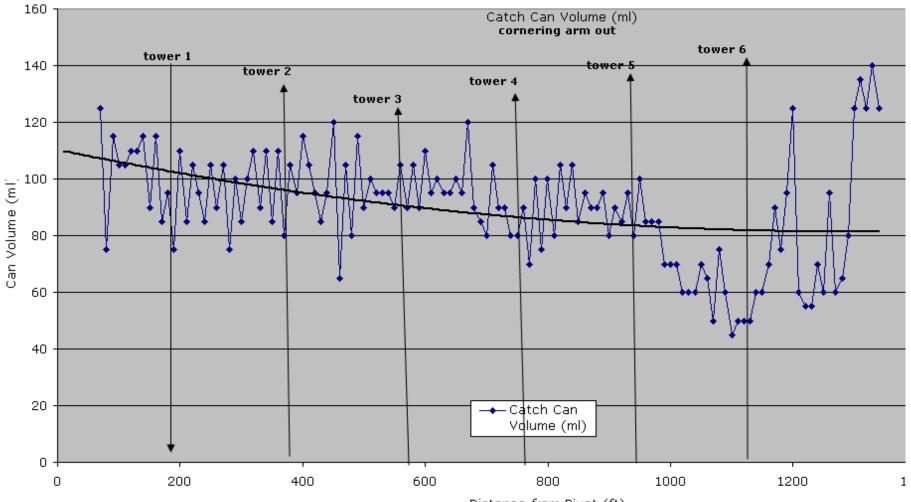


Irrigation System Uniformity -Options

- Irrigator trainings (MSU Ext., MGSP, NRCS)
- Private consultants
- SCD

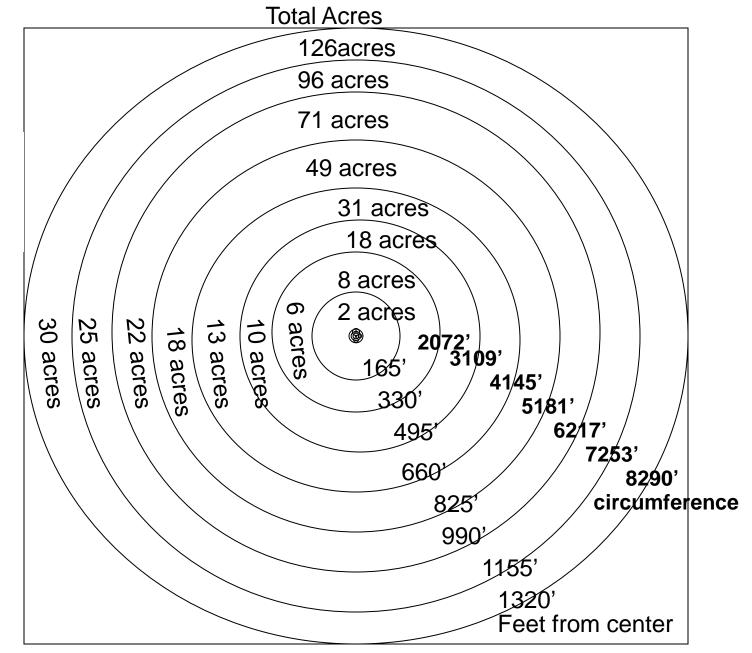
Catch Can Volume (ml)

http://web1.msue.msu.edu/stjoseph/anr/anr.htm

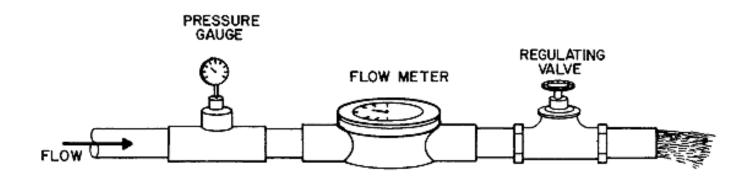

Greatest improvement needed

- End gun stop adjustment
- Water supply over or under design
- End gun orifice, too little or too much
- Wrong sprinkler or tip
- Leaks, plugs and <u>no turn sprinklers</u>

Water supply over or under design


supply over design yield tail up, supply under design yield tail down

Example of Water supply under volume for sprinkler design



Over and under application issue affect the majority of the application

area

Measure flow at desired pressure prior to ordering sprinkler package

Poor performance:

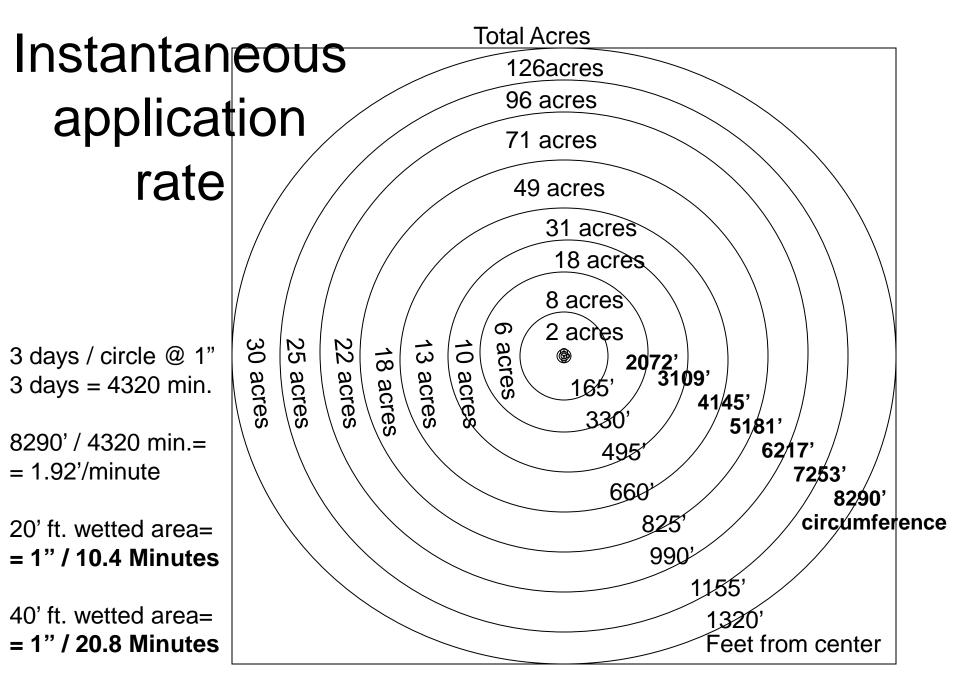
Ask dealer to measure flow at peak water use season and compare to design parameters.

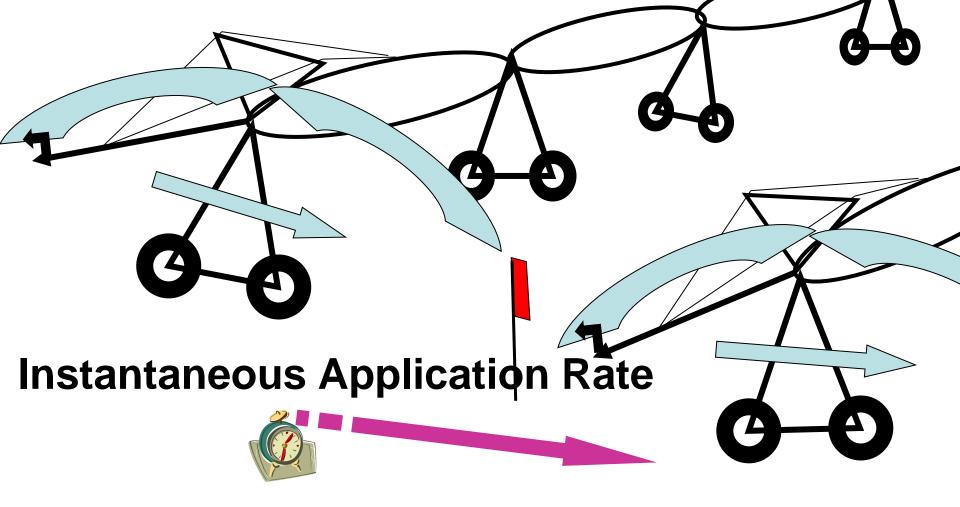
Most system apply within 85% of the expected application

1	MSU Extension Irrigation System Evaluation Tool, 1-23-07												
2	Farm Name	-	arm										
3							System	Uniformi	ty Coeff	ficient =	<u>79</u>		
4	System Iden	tification	Cornering Ar	m System or		Farm-Behind House		Good Syste	em uniformit	γ coefficient a	re 85 or greater	1	
5			Cornering Ar				De	viation from			-0.04		
6	System Sett	ings										Applicatio	
7	Application rate (in) 0.5					Wind	speed (mph)		4 mph	11.	~P/in		
8	Percent timer Setting (%) 19		19			Wind Condition (variable or steady)				steady	41	d ite	
9	· ·	^p ressue (psi)										20r , 40	n :
10			lication cale									Cto	'S
11						section of system (min		22		Inches/Hour	1.25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim × \circ
12		Rate of appli	cation for the	highest rate	section of sy	stem (minute /one inch		48.00					ati-
13							Average App			1.164			~00
14	Length of evaluation area (ft) Catch Can Spacing Distance (ft)					Average Ap	plication (in)		0.46			\sim	
15	Catch	Can Spacing	Distance (ft)	10		-							
16				400			catch, collec			88.95			
17	number of	number of cans data collected from		129 134		70% average catch can (ml)				59.94			
18 19		number of cans set		134		Evaluation area, full circle (acres)				122.82 76.977			
20	Disputer of actals can (am)		9,9		catch can openning area (sq cm)			11.767					
20	Diameter of catch can (cm)		9.9		catch can openning area (sq in)			4	11.767				
21			Distance	catch	Data					Deviation	Area covered	Area covered	
23	catch can		from center	volume in	adjustment		Water	Water	% applied	from	per catch can		Weighted
24	number		point	ml	adjaotinioni		volume (cm)		of average	average (%)	(acres)	(% of total)	Deviation
25	1		10		88.95		1.156	0.455	99.26%	-0.74%	0.01623	0.01%	0.0001
26	2		20		88.95		1.156	0.455	99.26%	-0.74%	0.02885	0.02%	0.0002
27	3		30		88.95		1.156	0.455	99.26%	-0.74%	0.04327	0.04%	0.0003
28	4		40		88.95		1.156	0.455	99.26%	-0.74%	0.05770	0.05%	0.0005
29	5		50		88.95		1.156	0.455	99.26%	-0.74%	0.07212	0.06%	0.0006
30	6		60		88.95		1.156	0.455	99.26%	-0.74%	0.08655	0.07%	0.0007
31	7		70	125	0.00		1.624	0.639	139.48%	<u>39.48%</u>	0.10097	0.08%	0.0011
32	8		80	75	0.00		0.974	0.384	83.69%	<u>-16.31%</u>	0.11539	0.09%	0.0008
33	9		90	115	0.00		1.494	0.588	128.32%	<u>28.32%</u>	0.12982	0.11%	0.0014
34	10		100	, 105	0.00		1 364	0.537	117 16%	17 16%	በ 14424	П 12%	0 0014
14 4	N → N Data Entry / Uniformity Graph /												

Preventing Irrigation Runoff

(comparing irrigation instantaneous application rate to soil infiltration rate)


Preventing Irrigation Runoff


(comparing irrigation instantaneous application rate to soil infiltration rate)

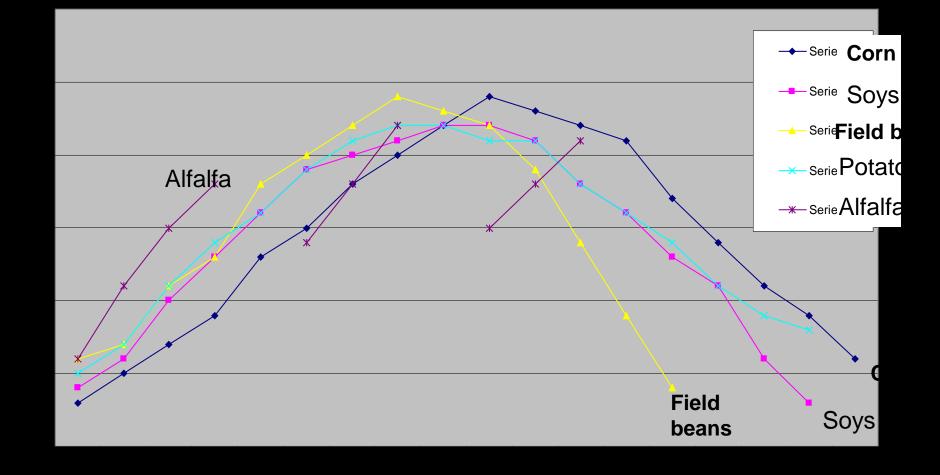
Sprinkler package or nozzle selection along with pressure dictates water application rate.

Factors that *increase* runoff :

- •Small Wetted area or throw of sprinkler
- Low Pressure
- Larger applications volumes
- •Soil compaction
- Heavy soils
- •Slope
- •Row hilling

- 1. Time it from first drop of irrigation to last
- 2. Divide by know application rate
- 3. Convert to minute to provide 1" of irrigation

Water Supply



Quality Factors

- Foreign material clogs pumps, screen and nozzlessand, algae, aquatic plants and fish/frogs
- Salt salinity (western problem)
- Calcium and other elements that deposit in pipes
- Disease agents manure effluent, waste treatment facilities,
- Warm surface water- major vegetable production limitations
- Aquatic weed treatment-lake algae milfoil treatment

Quantity needed

- Irrigation water replaces the plant water use (removed from soil)
- Water use is directly correlated to light interception
- 50% light interception results in about 50% of the maximum water use
- Maximum water use mid-July early August, full light interception, highest temperatures and brightest days.

From Minnesota Extension bulletin "Irrigation Scheduling", assuming temperature 80-89

Quantity Needed

- Maximum water use for most crops is .27 .32 in./day
- 3 gal/minute/acre pump capacity = 1"/week
- 5 gal/minute/acre pump capacity = .25 in./day
- 7 gal/minute/acre pump capacity =.33 in./day, 1"every 3 days
- 500 gal/minute pump can provide 1" every 4 days on 100 acres

Quantity Needed

In a hot 1st week of August John's corn crop ET. was .30 in./day John's field has a AWC of <u>3.0 in.</u> (Available water capacity)

He started irrigating when the AWC was **<u>1.0 in.</u>** down

John's irrigation system can apply .20 in./day.

By the end of the week how far behind is John? (.30 -.20)x7 <u>=.70 in.</u>

During 2nd week of August, ET. remains .30 in./day, John shuts down 2 days for repair. By week end how far behind is John? (.5 +.6)= <u>1.1in.</u> <u>2.80 in. total deficit</u>

3rd. Week, no rain, John's corn field is hurting.

Calculating drought capacity

- Crop ET. was 0.30 in./day
- Available water capacity of **03.0 in.** (AWCI
- Irrigation system can apply 0.20 in./day.
- Started irrigating when the AWC was **<u>1.0 in.</u>** down
- <u>3.0 in.</u> (AWC) <u>1.0 in.</u> = 2.0 in. available capacity
- 2.0 in. available capacity / 0.10 daily deficit = 20 days
- 20 days of drought capacity- Not Considering down time

Limited water supply Irrigation Management

- Diversify the crops sharing the water supply between high and low water use.
- Stager planting date to stager peak water need times.
- Plant part of irrigated area to a sacrifice crop to neglect during extended drought.
- Start irrigating early to bank water ahead.
- Stager forage crop cutting dates to avoid simultaneous peak use.

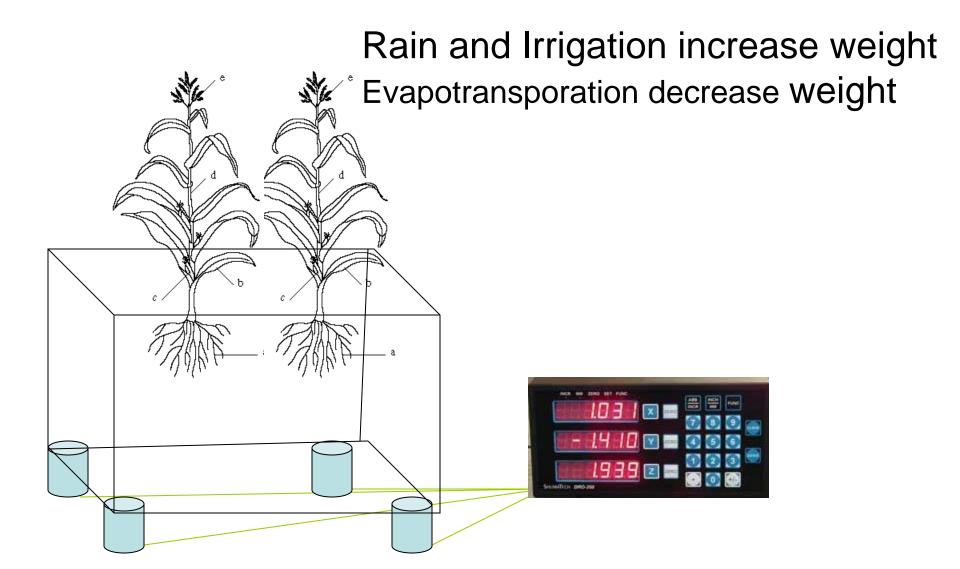
Irrigation Scheduling

- Method to determine the appropriate amount of water to be applied to a crop at the correct time to achieve healthy plants and conserve water
- Can measure soil moisture

Or

 estimate evapotranspiration (ET) using weather data

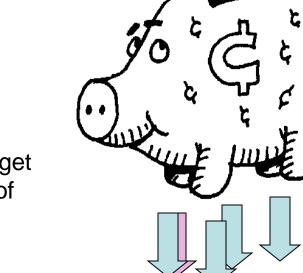
Potential ET measured by weighing lysimeter


Determining irrigation requirements

- The plant water requirement includes the water lost by evaporation into the atmosphere from the soil and soil surface
- and by transpiration, which is the amount of water used by the plant.
- The combination of these is evapotranspiration (ET).

Meteorologically, ET depends on...

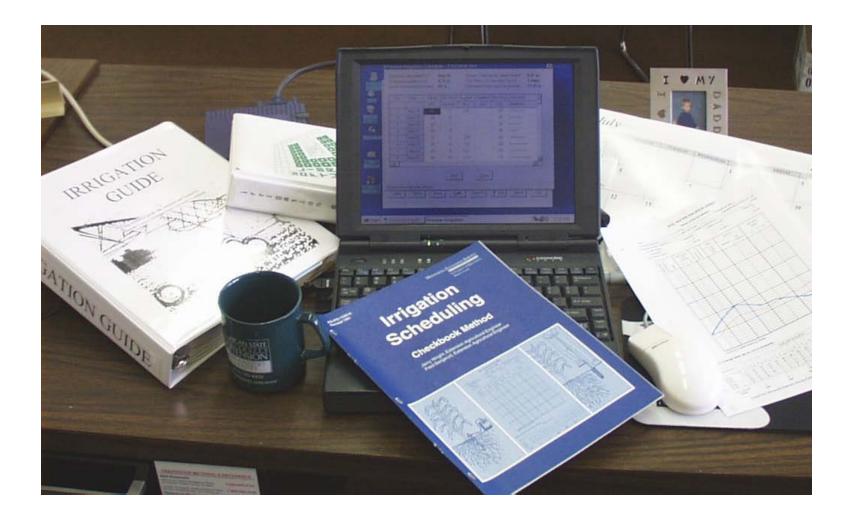
- Evapotranspiration (ET) = fn (net radiation) +
 - fn (temperature) +
 - fn (wind speed) +
 - fn (air humidity)


Weighing Lysimeter

Think of your soil as a bank

Water holding capacity: The soil (bank) can hold only a given volume of water before it allow it to pass lower down. Soil type : Heavier soil can hold more water / foot of depth than light soils

Intake rate: Water applied faster than the soil intake rate is lost.



Deletion: Plants can pull out only 30 - 60% of the water

Water lost from the bottom of the profile can wash out (leach) water soluble nutrients and pesticides.

Rooting depth: The plant can only get water to the depth of it's roots.

Irrigation Scheduling Checkbook Method

Calculating Water Holding Capacity

Soil Name	Depth Inches	Available water holding capacity	Average Available water holding capacity	Ave. Available water holding capacity (24 in.)	Ave. Available water holding capacity (36 in.)
Oshtemo	0 - 14	0.10 - 0.15	0.125	14" x 0.125=1.75	14" x 0.125= 1.75
	14 – 35	0.12 – 0.19	0.155	10" x 0.155=1.55	21" x 0.155= 3.26
	35 - 60	0.06 - 0.10	0.08		1" x 0.08 = 0.08
				= 3.3	
					= 5.09
Spinks	0 - 10	0.08 - 0.10	0.09	10" x 0.09= 0.9	10" x 0.09= 0.9
	10 – 26	0.08 – 0.10	0.09	14" x 0.09= 1.26	16" x 0.09= 1.26
	26 - 60	0.04 - 0.08	0.06		8" x 0.06= 0.48
				= 2.16	
					= 2.64

Rain Gauges

- Basic unit 2 inch opening
- Cost less than \$10
- One rain gauge for each 40 acres.
- Recording rain gauge cost \$50 \$100

Irrigation Scheduling Checkbook Method –University of Minnesota

- Items to Conduct Checkbook Irrigation
 Scheduling
- o Two or more rain gauges
- o Max-Min thermometer or access to local temperature reports
- o Soil probe or in field moisture sensors
- o Daily crop water use table or local ET hotline or website report
- o Soil water balance worksheets
- o Estimate of soil moisture holding capacity

SOIL WATER BALANCE SHEET

(Make copies as needed)

FieldSW 1/4 Pumping Capacity Available Water Capacity_ Growth Stage				city	ypni per acre			n ro	Emergence date net application in root zone of <u>36</u> " Critical Growth					nches per uay				
Allowable Soil Water Deficit				-	50 % 1.5 _inches				% inches					% inches				
Soil water field			ε	Add g			Subtract					Available Soil water						
Week after emergence	Date		read	ing B	Maximum	temperature	w	Crop /ater use		Rain	fall	Net irrigation		2.0	2.00 ~		В	
	Jun 21				75		.1	5		-0-				1.8				
	Jun 22				75		.1			-0-				1.7	-			
	Jun 23				85		.18			-0-				1.5				
	Jun 24			85		.18			-0-		0.75		1.3		_			
	Jun 25				75 <u>.15</u> 75.15			-0- 0.75			1.94							
	Jun 26				75		1;	b		-0-					9	-		
							Week	after e	merge	ence								
Temperature F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
50-59 60-69 70-79 80-89 90-99	.01 .02 .03 .03 .04	.02 .03 .04 .05 .06	.03 .04 .05 .07 .08	.04 .06 .07 .09 .11	.05 .08 .10 .13 .15	.06 .09 .12 .15 .18	.08 .11 .15 .18 .21	.09 .12 .16 .20 .24	.09 .13 .17 .22 .26	.10 .15 .19 .24 .28	.10 .14 .19 .23 .27	.10 .14 .18 .22 .26	.09 .13 .17 .21 .25	.07 .11 .14 .17 .20	.06 .09 .11 .14 .17	.05 .07 .09 .11 .13	.04 .06 .07 .09 .11	.03 .04 .05 .06 .07
Corn growth stages		↑ 3 leaf		- '	↑ 8 leaf			1 st tassel	∱ silk		↑ blister kerne			↑ early dent	î dent		. "	

Michiana Irrigation Scheduler

- Max and min temperatures
- Rainfall/Irrigation

Purdue Agronomy web site – Michiana Irrigation Scheduler: Est. From High/Low temp. & date www.agry.purdue.edu/irrigation/IrrDown.htm

📑 Michiana Irrigation Scheduler - J&L.IRR 📃 🗖 🗙									
Field, Crop & So	oil Data <u>W</u> eather &	Weather & Irrigation Data							
Farm Name	J&L	Rooting Depth	2.5 Feet						
Field ID	Home	Water Holding Capacity	3.6 Inches						
Location	Southern MI (43° Lat.) 💌	Emergence Moisture	100 %						
Crop	Corn	Minimum Moisture	65 %						
Emergence Date	5/8/04 mm/dd/yy								
Growing Season	105 Days	Calculation Date	9/20 mm/dd						
Projected Yield	180 Units/Acre								
Notes									
<u>N</u> ew <u>O</u> pe	en <u>S</u> ave <u>C</u> alc	Opt <u>i</u> ons ? <u>H</u> elp	<u>A</u> bout E <u>x</u> it						

Enter the name of the farm to be irrigated.

7 Michiana Irrigation Scheduler - J&L.IRR

Field, Crop & Soil Data

Weather & Irrigation Data

	Day	Date	Normal	High	Low	Rainfall	Irrigation				
			Temp.	Temp.	Temp.	(in.)	(in.)				
	39	Jun 15	67	80	61						
	40	Jun 16	67	83	67						
	41	Jun 17	68	78	63				-		
	42	Jun 18	68	69	61					<u>G</u> etTerr	nps
	43	Jun 19	68	72	51		.8				
	44	Jun 20	68	73	45						
	45	Jun 21	68	69	53	.1					
	46	Jun 22	69	80	54						
	47	Jun 23	69	70	49						
	48	Jun 24	69	72	51		.8	F			
							_				
	<u>N</u> ew	<u>O</u> pen	<u><u>S</u>avi</u>		alc O	pt <u>i</u> ons	? <u>H</u> elp		<u>A</u> bout	E	i <u>x</u> it
En	Enter the field's daily temperature, rainfall and irrigation data.										

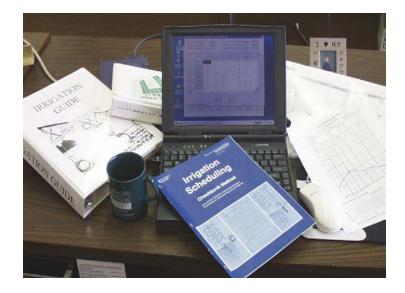
Schedule Calculated For	Sep 20	Amount That Can Be Safely Added	0.01 in.
Evapotranspiration Rate	0.00 in.	lf No Rain, You Can Add 1 Inch In	354 days
Soil Profile Moisture Content	100 %	Estimated Water Loss For Season	17.39 in.

Day	Date	Temp.	Dev. from	Rainfall	Irrigation	Soil Mois.	Soil Mois. 🔺
		(°F)	Normal	(in.)	(in.)	(%)	(relative)
1	May 08	66	+14			100	++++++
2	May 09	70	+17	0.70		105	++++++
3	May 10	70	+17	0.10		113	++++++++
4	May 11	73	+19	0.10		105	++++++
5	May 12	68	+13			100	+++++
6	May 13	70	+15	1.00		105	++++++
7	May 14	54	-2	0.70		103	++++++
8	May 15	57	+1			100	+++++
•							Þ

<u>P</u>rint

<u>C</u>lose

Browse the daily calculations.


Irrigation Scheduling Checkbook Challenges

Errors will accumulate over time -Weekly ground truthing needed

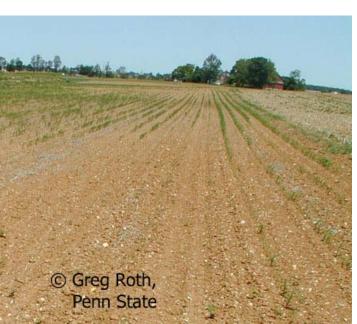
Rainfall variability is more than often considered

Only "effective" rainfall and irrigation should be considered - Only water entering root zone uniformly is "effective"

Corn crop mature in program by calendar, not heat

?? Soil Moisture ??

Pesticide and Nitrogen issues -Cons of Irrigation


- Irrigation is most common on light/sandy soil that often have high poorly protected aquifers.
- Irrigated soil will often be maintained with higher soil moisture than non-irrigated, increasing the potential of leaching pesticides and nitrogen.

Pesticide and Nitrogen issues -Pros of Irrigation

- Lack of water accounts for 45% yield variation on light/sandy soil.
- Irrigation allows higher pesticides and nitrogen use efficiency, using nutrients that may be lost post harvest.
- The greatest potential of leaching pesticides and nitrogen happens early in season, often prior to irrigation application season.

Assure the best plant stand possible

- Irrigate, if necessary, to make sure to get maximum germination and uniform emergence.
- ½ inch in most irrigated soil within five days of planting.
- Maintain a moist surface,0.10" to 0.20" applications, till spike.
- Are you ready to irrigate the day you plant?

Using irrigation to get the most from pesticides and nutrients

Timely application of irrigation water:

- Improves incorporation of herbicides.
- Improves activation of herbicides.
- Improves activation/reactivation of insecticides.
- Reduces nitrogen volatilization.
- Maximizes yield to utilize the resources.

CONTRACTOR OF THE ADDRESS OF THE ADD

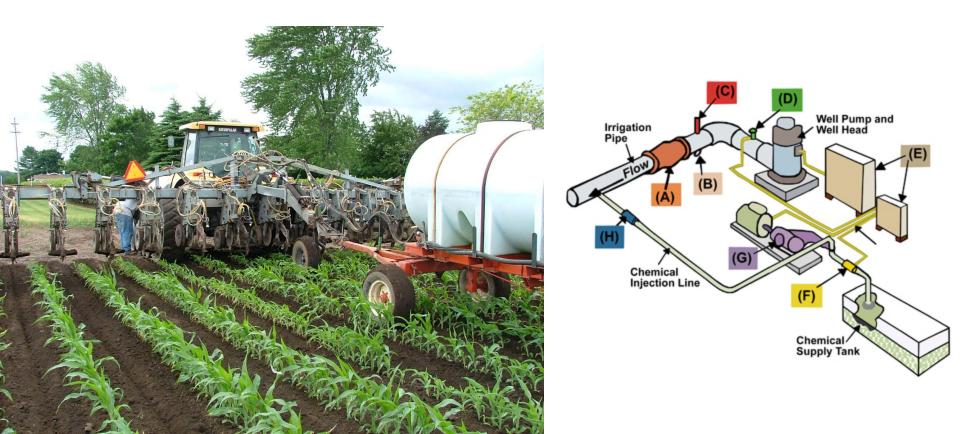
For weed control in corn, cotton, peanuts, pod crops, potatoes, safflowers, grain or forage sorghum, and soybeans

Active Ingredient:

"Dry weather following an application of Dual II Magnum or a tank mixture may reduce effectiveness. Cultivate if weeds develop."

RESTRICTED USE PESTICIDE (GROUND AND SURFACE WATER CONCERNS)

FOR RETAIL SALE TO AND USE ONLY BY CERTIFIED APPLICATORS OR PERSONS UNDER THEIR DIRECT SUPERVISION, AND ONLY FOR THOSE USES COVERED BY THE CERTIFIED APPLICATOR'S CERTIFICATION.


THIS PRODUCT IS A RESTRICTED-USE HERBICIDE DUE TO GROUND AND SURFACE WATER CONCERNS. USERS MUST READ AND FOLLOW ALL PRECAUTIONARY STATEMENTS AND INSTRUCTIONS FOR USE IN ORDER TO MINIMIZE POTENTIAL FOR ATRAZINE TO REACH GROUND AND SURFACE WATER.

- Do not apply this product through any type of irrigation system.
- If available, sprinkler irrigate within 2 days after application. Apply ½" -1" of water. Use lower water volumes (½") on coarse-textured soils, higher volumes heavier soils (1") on fine-textured soils.

Chemigation – Application of pesticide via irrigation water.

Fertigation – Application of fertilizer via irrigation water.

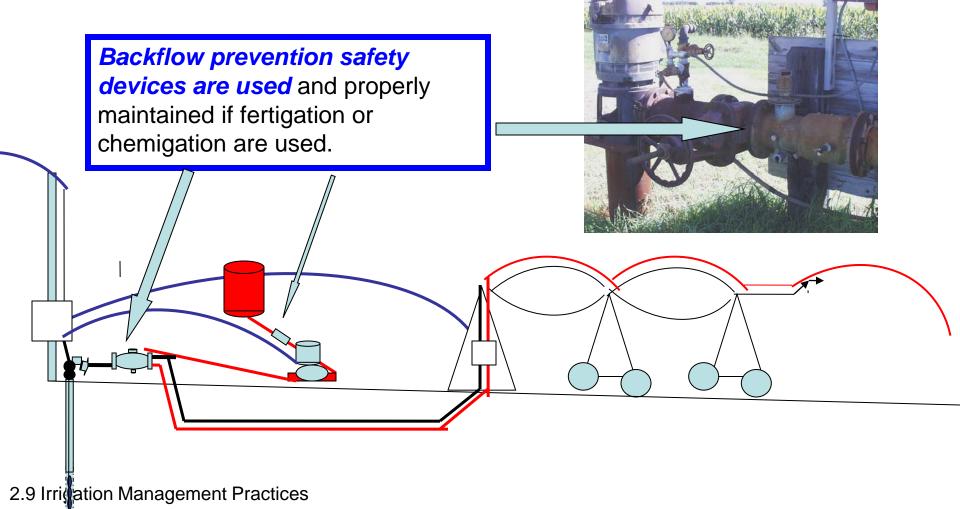
Split or Multiple Applications

- Try to match N uptake curve of the crop.
- Application of some N must occur by the sixth week after planting.
- Most of the N requirement should be applied by the tenth week after planting.
- Research data suggests that a well timed sidedress application can be as effective as multiple applications in irrigated corn production on loam or heavier soils.
- A combination of sidedress applications and N additions in irrigation water may be needed to maximize corn yields on some sandy soils.
- Preplant applications of greater than one-third of the total N requirement, with the remainder applied later, are not as effective as sidedress applications on irrigated sandy soils.

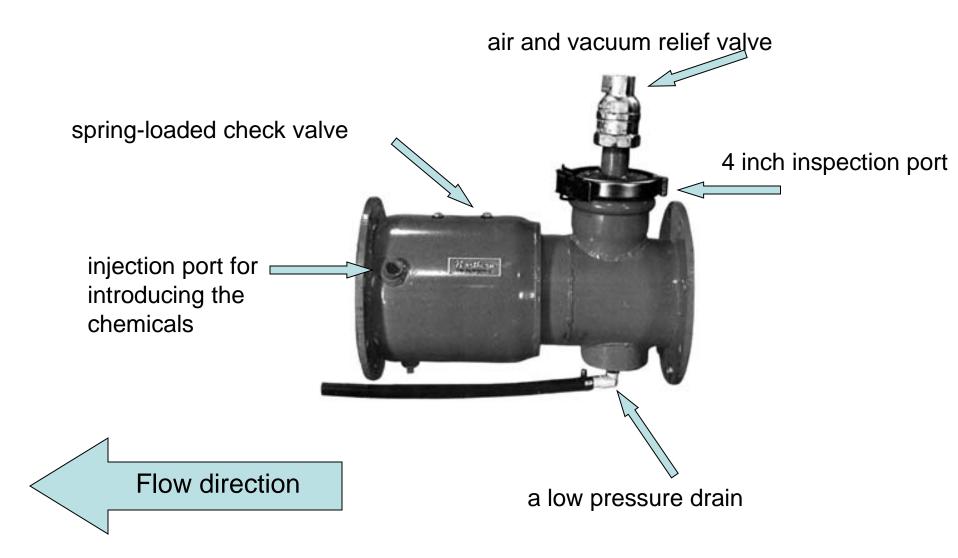
Chemigation Label

 Chemigation labels provide specific mixing application and safety precautions for irrigation applications.

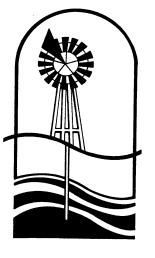
• EPA requires products applied through irrigation systems to have a chemigation label.


Chemigation Valve Requirements

Indiana and Michigan have specific chemigation valve requirements for public water supply connections but not for private water supplies.

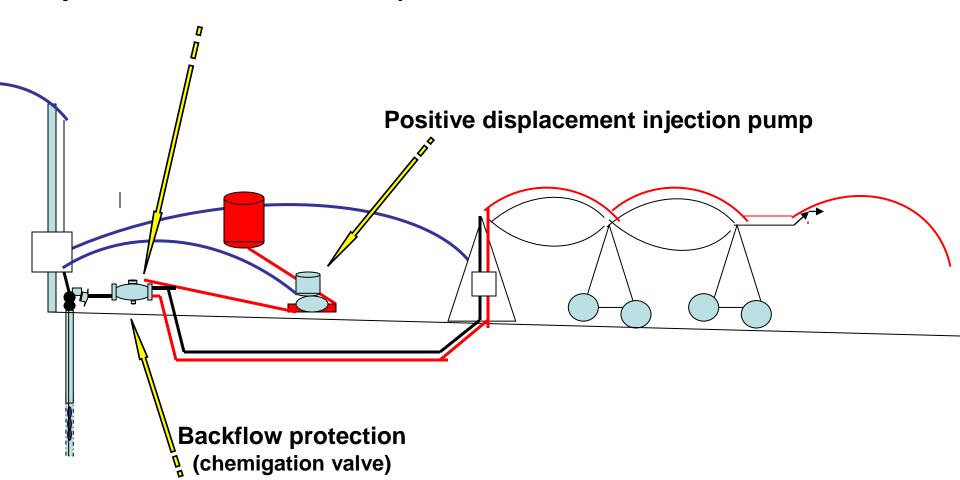

Both States require adequate protection of water supply in law or well code.

Are appropriate backflow prevention devices in place and properly maintained if fertigation or chemigation is used?



Most chemigation valves consist of:

Calibrating a Center Pivot for Chemigation



Irrigation management to Protect Groundwater

- Backflow protection with Air gap and vacuum relief
- -required for chemigation and fertigation
- good idea for all systems.
- -Interlocks between nitrogen pump and irrigation pump.
- -Backflow protection between injection point and supply tank.

Chemigation / Fertigation Systems Safety Interlock –Shut down entire system if any component stops

Injection nozzle with back flow protection

Well Backflow situation – What do I do?

Pump, Pump, Pump as soon as possible.

Nebraska study showed majority of contaminant recovered in the first hour when pumping started immediately.

- Increased recovery of contaminant out to three days of pumping. Majority in day one.
- Reduced total recovery if pumping start 24 hour later.

